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Abstract

In this paper we study the Neumann system, which describes the harmonic
oscillator (of arbitrary dimension) constrained to the sphere. In particular
we will consider the confluent case where two eigenvalues of the potential
coincide, which implies that the system has S1 symmetry. We will prove
complete algebraic integrability of the confluent Neumann system and show
that its flow can be linearized on the generalized Jacobian torus of some singular
algebraic curve. The symplectic reduction of S1 action will be described and
we will show that the general Rosochatius system is a symplectic quotient of
the confluent Neumann system, where all the eigenvalues of the potential are
double.

PACS numbers: 02.30.IK, 02.40.Tt, 45.20.Jj, 05.45.−a
Mathematics Subject Classification: 37J35, 37J15, 14H70, 14H40

1. Introduction

The Neumann system describes the motion of a particle constrained to the n-dimensional
sphere Sn under quadratic potential. The potential is given in ambient coordinates q =
(q1, . . . , qn+1) ∈ R

n+1 by the potential matrix A = diag(a1, . . . , an+1) as

V (q) = 1

2
〈Aq, q〉 = 1

2

n+1∑
i=1

aiq
2
i .

In the generic case where all the eigenvalues of the potential ai are different, the Neumann
system is algebraically completely integrable and its flow can be linearized on the Jacobian
torus of an algebraic spectral curve [1–3]. A standard approach to studying integrable systems
is by writing the system in the form of a Lax equation, which describes the flow of matrices or
matrix polynomials with constant eigenvalues, i.e. the isospectral flow [2, 4]. Eigenvalues of
the isospectral flow are the first integrals of the integrable system and Lax representation maps
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Arnold–Liouville tori into the real part of the isospectral manifold consisting of matrices with
the same spectrum. A quotient of the isospectral manifold by a suitable gauge group is in turn
isomorphic to the open subset of the Jacobian of the spectral curve [5].

Two different Lax equations are known for a generic Neumann system with n degrees of
freedom: one uses (n + 1) × (n + 1) matrix polynomials of degree 2 [2] and the other uses
2 × 2 matrix polynomials of degree n [3, 5]. The (n + 1) × (n + 1) Lax equation was used by
Audin [6] to describe the Arnold–Liouville tori for geodesic motion on an ellipsoid, which is
equivalent to the Neumann system.

In contrast to the generic Neumann system, the special confluent case in which some
eigenvalues of the potential coincide has not received much attention. In this paper, we will
consider the confluent case with two of the eigenvalues being the same and the Neumann
system having an additional S1 rotational symmetry. We will show that the confluent
Neumann system is algebraically completely integrable and that its flow can be linearized
on the generalized Jacobian of a singular algebraic curve. We will describe the symplectic
reduction of the S1 action, which will yield an alternative description of the Rosochatius system
[7–9] as a symplectic quotient of the confluent Neumann system. Mechanically speaking, the
Rosochatius system can be seen as a Neumann system on a rotating sphere. More generally,
one can describe the general Rosochatius system as a reduction of the confluent Neumann
system with all eigenvalues of the potential being double [1, 8]. Combined with the proof of
integrability of the confluent Neumann system this result will also give an alternative proof of
the algebraic integrability of the Rosochatius system.

When applying the 2 × 2 Lax equation to the confluent case, the resulting Lax equation
in fact describes the Rosochatius system and not the confluent Neumann system [10–12]. We
will therefore use the (n + 1) × (n + 1) Lax equation, where the resulting spectral curve is
singular in the confluent case. Following the standard procedure and normalizing the spectral
curve results in the loss of one degree of freedom. In order to avoid that, we will use the
generalized Jacobian of the singular spectral curve to linearize the flow as in [13, 14]. The
generalized Jacobian is an extension of the ‘ordinary’ Jacobian by a commutative algebraic
group (see [15] for a more detailed description). In our case the extension will be the group
C

∗ that corresponds to the rotational symmetry of the initial system. Generalized Jacobian
was used by others to linearize the flow of other integrable systems with rotational symmetry,
for example, spherical pendulum or Lagrange top [13, 14, 16, 17]. Our study, however, will
give a more detailed description of the relation between symplectic reduction and algebraic
reduction from generalized to ordinary Jacobian.

One should also mention that apart from the classical case there has been a lot of interest
in the quantum case [18–20] for both Neumann and Rosochatius systems.

After the introduction, Hamiltonian reduction and Liouville integrability of the confluent
Neumann system are discussed in section 2. In section 3, we study the (n + 1) × (n + 1)

Lax equation and the corresponding isospectral manifolds. Our main result is formulated in
theorem 3.5 and describes the relation of Arnold–Liouville tori to the generalized Jacobian of
the singular spectral curve. As a corollary the complete algebraic integrability and Liouville
integrability of the confluent Neumann system will follow. We conclude with proposition 3.8,
which describes the bifurcation diagram of the energy momentum map in terms of algebraic
data.

2. Hamiltonian description

The Neumann system describes a particle on a sphere (of arbitrary dimension) under the
influence of quadratic potential. We can write it as a Hamiltonian system on the cotangent
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bundle of the sphere T ∗Sn with the canonical symplectic form ωc and the Hamiltonian H given
in ambient coordinates (q, p) ∈ R

n+1 × R
n+1 as

H(q, p) = 1
2 (‖p‖2 + 〈q,Aq〉).

The potential is given by a positive definite linear operator A on R
n+1. For simplicity we

will assume that A is diagonal with positive eigenvalues ai . A consequence of positivity is
that the Hamiltonian is proper and the energy level sets—and hence Arnold–Lioville tori—are
compact. The equations of motion in the Hamiltonian form are

q̇ = p ṗ = −Aq + εq, (1)

where ε = ‖p‖2 + c is chosen so that ‖q‖ = 1 and the particle stays on the sphere.

2.1. Reduction of the symmetry

Let us consider the confluent case where all the eigenvalues ai of the potential A are distinct,
except an = an+1. The action ϕ′ of S1 = SO(2, R) on Sn, given by rotations in the qn, qn+1

plane, leaves the potential invariant and can be lifted to the symplectic action

ϕ : T ∗Sn × S1 → T ∗Sn

on the cotangent bundle that leaves the Hamiltonian H invariant. We would like to reduce this
action and describe the resulting reduced system in more detail.

Let K be the moment map for the lifted action ϕ. The map K is a real function on T ∗Sn

as so(2)∗ 	 R and is the angular momentum for the rotations in qn, qn+1 plane:

K(q, p) = qnpn+1 − qn+1pn.

Since the action ϕ is not free, the description of the reduced system is more complicated.
Let us denote with F the set of points on the sphere, where the action ϕ′ is not free. This is
precisely the fixed point set given by the condition

r2 = q2
n + q2

n+1 = 0.

The set F is a codimension-2 great sphere on Sn. Note that on F, the value k of the moment
map K equals 0. The set of regular points Sn

reg = Sn − F is an open subset of Sn on which the
action is free.

The reduced system is defined on symplectic quotients (Mk, ωk), which are parametrized
by the value k of the moment map K. We will use the operator //k to denote the symplectic
quotient. By definition

Mk = T ∗Sn//kS
1 := K−1(k)/S1

and ωk is defined with π∗ωk = ωc|K−1(k), where π is the quotient projection. For k 
= 0 the
fiber K−1(k) is a corank-1 sub-bundle of the cotangent bundle over the set of regular points
T ∗Sn

reg. Since the action is free on K−1(k), the standard result for lifted actions gives

(Mk, ωk) = (
T ∗(Sn

reg

/
S1), ωc + ωp

)
,

where ωp is the magnetic term coming from the curvature of the mechanical connection. In
our case the mechanical connection is flat and ωp = 0 [21]. The quotient manifold Sn

reg

/
S1 is a

dimension-(n−1) open half-sphere Sn−1
+ as we can see if we introduce cylindrical coordinates

(q1, . . . , qn−1, r(cos ϕ, sin ϕ)). The set Sn
reg is given by the condition r 
= 0 and the quotient

Sn
reg

/
S1 can be parametrized by (q1, . . . , qn−1, r) ∈ Sn−1 for r > 0. We can also see directly

by using cylindrical coordinates that the perturbation ωp of the canonical symplectic form is
zero.

3
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For k = 0 the description of M0 is more complicated, since the action on K−1(0) is not
free, and M0 is not a manifold. We will remedy this by considering a singular double cover of
the reduced phase space instead.

The set K−1(0) is not a sub-bundle of T ∗Sn, because at fixed points r = 0 the fiber
has a full rank and over Sn

reg the fiber has codimension 1. However, we can still pass the
quotient on the base manifold because the action is a cotangent lift. The quotient space Sn/S1

is a dimension-(n − 1) closed half-sphere
(
Sn−1

+

)c
and can be parametrized by cylindrical

coordinates (q1, . . . , qn−1, r) ∈ Sn−1, with r � 0. The symplectic quotient M0 is a cotangent
bundle over Sn/S1, in the sense that the fiber at a singular point with r = 0 is a closed
half-plane of ‘positive differentials’ (the differential, which is positive at the directions normal
to the boundary of Sn/S1). In this sense we can write

(M0, ω0) = (
T ∗(Sn−1

+ )c, ωc

)
.

To conclude the construction of the reduced system we have to calculate the reduced
Hamiltonian. This can easily be done using the parametrization with cylindrical coordinates
(q̂, p̂) = ((q1, . . . , qn−1, r), (p1, . . . , pn−1, pr))

H(q, p) = 1

2

(
n−1∑
i=1

(
p2

i + aiq
2
i

)
+ p2

n + p2
n+1 + an

(
q2

n + q2
n+1

))

= 1

2

(
n−1∑
i=1

p2
i + p2

r +
k2

r2
+

n−1∑
i=1

aiq
2
i + anr

2

)

= 1

2
(‖p̂‖2 + Vk(q̂) + 〈q̂, Âq̂〉) = Hr(q̂, p̂),

where Â = diag(a1, . . . , an). The additional term Vk(q̂) = k2

r2 corresponds to the centrifugal
system force, induced by the rotation.

To simplify the description of the reduced system, we will use the whole sphere Sn−1

instead of only half of it. The half-sphere
(
Sn−1

+

)c
can also be viewed as a quotient of Sn−1 by

the group Z2 acting with reflections r �→ −r . The reduced Hamiltonian Hr(q̂, p̂) can be lifted
on (T ∗Sn−1, ωc), since it only depends on r2 and p2

r and is invariant for the Z2 action. We have
thus constructed a Hamiltonian system (T ∗Sn−1, ωc,Hr) such that its reduction coincides with
the reduced Neumann system.

Theorem 2.1. The singular symplectic quotient (Mk, ωk,Hr) of the Neumann Hamiltonian
system (T ∗Sn−1, ωc,HA) with potential given by the matrix A = diag(a1, . . . , an, an)

is isomorphic to the quotient by the Z2 action of the perturbed Neumann system
(T ∗Sn−1, ωc,HÂ + Vk) with potential matrix Â = diag(a1, . . . , an).

The symplectic quotient of the confluent Neumann system is in fact a special case of the
Rosochatius system, which was studied in [7–10]. A general Rosochatius system is a
Hamiltonian system on T ∗Sn with potential

V = 1

2

(
n+1∑
i=1

aiq
2
i +

k2
i

q2
i

)
. (2)

We can generalize the procedure from the above to the case where the potential matrix has
all the eigenvalues double A = diag(a1, a1, a2, a2, . . . , an+1, an+1). This gives a mechanical
interpretation of the Rosochatius system as a Neumann system on a rotating sphere.
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Corollary 2.2. The symplectic quotient of the confluent Neumann system with potential matrix
A = diag(a1, a1, a2, a2, . . . , an+1, an+1) by the group of rotations (S1)n+1 is isomorphic to the
quotient by the group of reflections Z

n+1
2 of the Rosochatius system on T ∗Sn given by the

potential (2). The coefficients ki of the rational part are the values of the angular momentum
of rotations in the corresponding eigenplanes of the potential matrix A.

This result was already mentioned in [1] and was used in [8] to study the Rosochatius potential
without polynomial part.

2.2. Integrability

The Hamiltonian system with Hamiltonian H on the symplectic manifold of dimension 2n is
called integrable if there exist n functionally independent pairwise Poisson commutative first
integrals, one of which is H. To show that the system is completely algebraically integrable,
we will prove that the level sets of the first integrals are real parts of the extensions of Abelian
varieties by C

∗ (see [3] for a definition of complete algebraic integrability).
The integrability of the confluent Neumann system is a consequence of the integrability of

the generic Neumann system, which is well known [1, 22]. The first integrals for the confluent
case can be obtained by taking the limit an → an+1 on Uhlenbeck’s integrals for the generic
Neumann system:

F
g

i = q2
i +

∑
j 
=i

(qipj − qjpi)
2

aj − ai

. (3)

A set of commuting integrals, equivalent to (3), tends to a set of commuting integrals for the
confluent case{
F

g

1 , . . . , F
g

n−1, F
g
n + F

g

n+1,
1
2 (an − an+1)

(
Fg

n − F
g

n+1

)} → {F1, . . . , Fn−1, Fn,K
2}

when taking the limit an → an+1. The set of commuting integrals for the confluent Neumann
system is given by

Fi = q2
i +

∑
j 
=i

(qipj − qjpi)
2

aj − ai

; i < n

Fn = q2
n + q2

n+1 +
∑
j<n

(qjpn − qnpj )
2 + (qjpn+1 − qn+1pj )

2

aj − an

(4)

K2 = (qnpn+1 − qn+1pn)
2.

Note that K is angular momentum for the rotations in the qn, qn+1 plane. We can also verify
that the integrals in (4) are not independent but satisfy the same relations as Uhlenbeck’s
integrals in the generic case,

n∑
i=1

Fi = 1

and that the Hamiltonian H can be expressed as a linear combination of Fi and K2,
n∑

i=1

aiFi + K2 = 2H.

The Poisson brackets of Fi are continuous functions of ai so the commutativity of the integrals
is preserved when taking the limit an → an+1. Commutativity of K with Fi also follows
from the fact that Fi are invariant for the S1 action, generated by K. To conclude the proof of

5
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integrability one needs to verify the independence of the integrals (4) (up to relation
∑

Fi = 1).
The commutativity of the integrals Fi and K2 also follows from the AKS theorem, if we write
Fi and K2 as invariant functions of Lax matrix on an appropriate loop algebra. This is a
standard way of proving commutativity of Uhlenbeck’s integrals for the generic Neumann
case [5, 10].

Let us combine all the first integrals in a map

FEM : T ∗Sn → R
n

(q, p) �→ (F1, . . . , Fn−1,K)

we will call energy momentum map. The fundamental property of integrable systems is that
the level sets of energy momentum map FEM are n-dimensional tori, on which the flow can
be linearized. We will also use the complexified version of FEM , defined on (T ∗Sn)C.

Theorem 2.3. The confluent Neumann system (T ∗Sn, ωc,H) is an algebraically completely
integrable system.

We have seen that by taking the limit an → an+1, {F1, . . . , Fn−1,K
2} is a set of n commuting

first integrals for symmetric Neumann system and we will show later in subsection 3.3 that
they are functionally independent. We will also prove the part about algebraically complete
integrability in subsection 3.3.

From the fact that the symmetric Neumann system is integrable it also follows that its
symplectic quotient is integrable. This gives an alternative proof of the integrability of the
Rosochatius system, which is a symplectic quotient of the symmetric Neumann system.

Corollary 2.4. The Rosochatius system (T ∗Sn, ωc,H+Vr) with Vr = ∑
ki2

q2
i

is an algebraically

completely integrable system.

3. Lax representation of the confluent Neumann system

In this section we will use the Lax equation for (n + 1) × (n + 1) matrix polynomials to
study the confluent Neumann system with n degrees of freedom. We will show that the flow
of the system can be linearized on the Jacobian of the singular spectral curve and that the
system is completely algebraically integrable. This will also conclude the proof of Liouville
integrability and yield the description of the bifurcation diagram for an energy–momentum
map.

3.1. Lax equation in g̃l(n + 1, C)

Let us write the confluent Neumann system (1) as an isospectral flow of matrix polynomials
in loop algebra g̃l(n + 1, C). We will use the Lax equation introduced by Moser [1]. The
loop algebra g̃l(n + 1, C) consists of Laurent polynomials with coefficients in gl(n + 1, C),
and can be written as a tensor product gl(n + 1, C) ⊗ C[λ, λ−1]. Consider the complexified
Neumann system (1) on a subspace (T ∗Sn)C ⊂ C

n+1 × C
n+1 defined by constraints

∑
q2

i = 1
and

∑
qipi = 0. We introduce Lax matrix polynomial from g̃l(n + 1, C),

L(λ) = Aλ2 + q ∧ pλ − q ⊗ q; q, p ∈ C
n+1, (5)

where A is the potential matrix of the Neumann system and (q, p) ∈ (T ∗Sn)C. The Neumann
system either generic or confluent can be written as Lax equation

d

dt
L(λ) = [M(λ), L(λ)] (6)

6
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with M(λ) = Aλ + q ∧ p = (λL(λ))+ (the subscript + denotes the polynomial part of an
element of g̃l(n + 1, C))[2]. The flow of (6) is isospectral as it conserves the spectrum of the
matrix L(λ). This means that the characteristic polynomial P(λ,μ) and the corresponding
affine spectral curve, defined by the equation

P(λ,μ) = det(L(λ) − μ) = 0

do not change along the flow and can be expressed only with the values of the first integrals
of the Neumann system. In order to avoid unnecessary singularities at the infinity, the affine
curve is completed in the total space of the line bundle O

P
1(2) over P

1, which is given by
the transition function (λ, μ) �→ (λ−1, λ−2μ). The completion of the affine spectral curve in
O

P
1(2) is called the spectral curve of L(λ) and is denoted by Cm. Note that for any given L(λ)

a map λ : Cm → P
1 and a section μ of the bundle λ∗O

P
1(2) apart from the spectral curve Cm

are also naturally defined.
The spectral curve of L(λ) is hyperelliptic and we can see that by introducing new

variables x = λ−2μ and y = λ
∏n+1

i=1(ai − x), where ai are the eigenvalues of the potential
matrix A. The equation we obtain is

y2 = Q(x)

n+1∏
i=1

(ai − x), (7)

where Q(x) is a polynomial of degree n [1, 6]. The coefficients of Q(x) are first integrals
of the confluent Neumann system and if we write Q(x) in terms of Lagrange interpolating
polynomials over the points a1, . . . , an, an using notation with partial fractions

Q(x) =
n+1∏
j=1

(aj − x)

(
Fn

an − x
+

K2

(an − x)2
+

n−1∑
i=1

Fi

ai − x

)
, (8)

the coefficients we obtain are the integrals (4) we considered before.
In the confluent case, where an = an+1, the product

∏
(ai − x) has a quadratic factor

(an − x)2 and the spectral curve has a singular point S given by (x, y) = (an, 0) or
(λ, μ) = (∞, an). The singularity S is a double point for K 
= 0 and a cusp for K = 0. The
smoothness of the spectral curve is closely related to the regularity of the matrix L(λ). Recall
that a matrix B ∈ gl(r, C) is called regular if all the eigenspaces of B are one dimensional.

Proposition 3.1. Let C be the spectral curve of matrix polynomial L(λ) and a ∈ P
1. If all the

points λ−1(a) ∈ C are smooth, then the matrix L(a) is regular.

For proof see [5, 13]. The value of L(λ)λ−2 at λ = ∞ is the matrix A and the singularity at S
is a consequence of the fact that A is not regular when an = an+1.

Let C be normalization of the spectral curve Cm, which is described by

w2 = Q(x)

n−1∏
i=1

(ai − x), (9)

where w = y/(an − x). We will call C the normalized spectral curve of L(λ). There is a
map π : C → Cm that is biholomorphic everywhere except at the inverse image of the singular
point S. The inverse image π−1(S) consists of two points {P+, P−} for K 
= 0 and a point P0

for K = 0. In case when K 
= 0, the curve Cm is obtained from C by identifying the points
{P+, P−} into the singular point S. The singular curve Cm can be described as a singularization
of C given by modulus m (see [15] for details). The modulus is m = P+ + P− for K 
= 0 and
m = 2P0 for K = 0.

7
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Remark 3.2. Note that we will only resolve the singularity at S, which is ‘generic’ in the
sense that it appears for all the values of the energy–momentum map. So the curve C can still
be singular for some values of the energy–momentum map.

Finally we find the genus of C and Cm from the fact that the curves are hyperelliptic and from
the degree of the polynomials in (7) and (9). We obtain g(C) = n − 1 for the normalized
spectral curve C and the arithmetic genus ga(Cm) = n for the singular curve Cm.

3.2. Isospectral manifold of matrix polynomials

We have seen that the Neumann system satisfies Lax equation and that the spectral curve
depends only on the first integrals and that all the first integrals are encoded in the spectral
curve. The level sets of (complexified) energy–momentum map FEM lie in the set of matrices
L(λ) with the fixed spectral curve Cm. It is therefore essential to describe the set of matrix
polynomials with a given spectral curve.

Let P(λ,μ) be a spectral polynomial for some matrix polynomial L(λ) ∈ g̃l(r, C)).
Denote with MP the subset of all the elements of g̃l(r, C) with the same characteristic
polynomial P (this also fixes the spectral curve C)

MP = {L(λ); det(L(λ) − μ) = P(λ,μ)}.
All L(λ) ∈ MP have the same spectral curve C, which is defined by P(λ,μ) = 0.

While the characteristic polynomial and thus the eigenvalues of L(λ) are fixed by the
flow, the eigenvectors and eigenspaces change. Let us define a map

ξL(λ) : C → P
r−1,

such that ξL(λ)((λ, μ)) is a one-dimensional eigenspace of the matrix L(λ) with respect to the
eigenvalue μ. If the spectral curve is smooth, than by proposition 3.1 all the eigenspaces of
L(λ) for any λ are one dimensional and the map ξ is well defined. The map ξL(λ) defines a line
bundle on C and its dual is called eigenvector line bundle or shorter eigenline bundle. We will
denote the eigenline bundle by LL(λ). By construction, the eigenline bundle is a sub-bundle
of the trivial bundle C × C

r . One can see by using the Riemann–Roch–Grothendick theorem
that the degree (Chern class) d of the eigenline bundle LL(x) equals g + r − 1 where g is the
genus of the spectral curve C.

The only condition for ξL(λ) to be defined is that the eigenspaces of L(λ) are one
dimensional for all but finite number of points on C. If the spectral curve is singular, then
the map ξL(λ) can be defined on the set of points Cm − N ⊂ Cm where the matrix L(λ) has
a one-dimensional eigenspace. If the set N is finite, the map ξL(λ) can be extended as a
holomorphic map and the eigenline bundle LL(x) can be defined on the normalization C of
the spectral curve. Note that by proposition 3.1 the set N is a subset of singular locus of the
spectral curve Cm.

One can define the eigenbundle map

e : MP → Picd(C) L(λ) �→ [LL(λ)],

from MP to the Picard group Pic(C) of isomorphism classes of line bundles on the normalized
spectral curve C. The subset Picd(C) consists of classes of line bundles with the given Chern
class d. The set Picd(C) is a copy of the zero-degree Picard subgroup Pic0(C), which is in turn
isomorphic via the Abel–Jacobi map to the Jacobian Jac(C) of C. The map e assigns to each
matrix polynomial L(λ) the isomorphism class of its eigenline bundle and thus encodes the
flow of Lax equation. The map e is not surjective since eigenline bundles cannot lie in the
special divisor � on the Jacobian. The map e is neither injective since the class of eigenline

8
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bundles defines the matrix polynomial only up to conjugation by the gauge group PGl(r, C).
The space we have to consider is the quotient space MP /PGl(r, C) and it was shown in [5]
that if the spectral curve C is smooth, the space MP /PGl(r, C) is isomorphic as an algebraic
manifold to the Zariski open subset Jac(C) − � of the Jacobian of the spectral curve C. The
isomorphism is given by the eigenbundle map e.

As the leading coefficient in L(λ) is preserved by the flow, we will use the closed subset of
MP of matrix polynomials with fixed leading coefficient. Let L(λ) = Aλl +Al−1λ

l−1 +· · ·+A0

and let A be fixed. We denote

MA
P = {

L(λ) ∈ MP ; lim
λ→∞

L(λ)/λl = A
}
.

The action of the gauge group PGl(r, C) onMP reduces to the action of the stabilizer subgroup
PGA < PGl(r, C) of A. The quotient MA

P by PGA is again isomorphic to the Jacobian

MA
P

/
PGA 	 Jac(C) − �.

Remark 3.3. If the spectral curve C is smooth at infinity, the matrix A has to be
regular by proposition 3.1. As a consequence, the stabilizer group of A is the product
PGA = (C∗)s−1 ×C

r−s where s is the number of distinct eigenvalues of A. If A is not regular,
the dimension of the stabilizer group PGA is larger. In our case, when A = diag(a1, . . . , an, an)

the group PGA is the product

(C∗)n−2 × Gl(2, C).

Let us assume for one moment that the matrix A is regular. We have seen before that the level
set MA

P is an extension of Jac(C) − � by an Abelian algebraic group PGA. As it happens, the
generalized Jacobian is also defined as an extension by the Abelian algebraic group and it was
shown in [13] that

MA
P 	 Jac(Cm) − �

for a suitable choice of modulus m. The chosen modulus is the effective divisor consisting of
infinite points Pi on the spectral curve

m =
∑

Pi∈λ−1(∞)

miPi,

where the coefficients mi are multiplicities of the eigenvalues μ(Pi) of A = L(∞). The
isomorphism MA

P → Jac(Cm) − � is given by the eigenbundle map em to the generalized
Jacobian. Let S = |m| be the set of points in C that are mapped to the singular point in Cm.
The line bundle on the singular curve Cm is given by a divisor on C that does not intersect the
singular set S. To give a line bundle on Cm is thus enough to give a section of a line bundle on
C that has no zeros or poles in S. We can then extend the map e : MP → Picd(C) to a map

em : MP → Picd(Cm)

by choosing a section of e(L(λ)) uniformly on MP that does not have any zeros or poles at the
infinite point. This can be done by appropriate normalization. It was shown in [13, 14] that em

gives an isomorphism from the isospectral space MA
P to the Zariski open subset Jac(Cm) − �

of the generalized Jacobian of the singular spectral curve, given by modulus m.

Remark 3.4. The above results give orientation about the expected number of degrees of
freedom of isospectral flows. We see that the upper limit is the arithmetic genus of the
singularization of the spectral curve, which depends on the degree l and the rank r of L(λ).

9



J. Phys. A: Math. Theor. 41 (2008) 395201 M Vuk

In the case of confluent Neumann system, the matrix A is not regular and the corresponding
spectral curve is singular. We will show later that the Lax flow also preserves part of the
‘derivative’ of L(λ) at the singular point. We will restrict the space MA

P further by fixing a
specific block of the lower term Al−1. The resulting isospectral set will again be isomorphic
to the open subset of the generalized Jacobian [14]. Note that we have to assume regularity of
the fixed block of the lower term Al−1 in order to have the isomorphism.

3.3. Proof of the integrability

In order to prove the Liouville integrability of the confluent Neumann system, we have to
show that its first integrals {F1, . . . , Fn−1,K} Poisson commute and that they are functionally
independent. We already know that the integrals commute from section 2. We also know that
the level sets of the first integrals—the Arnold–Liouville tori—lie in the isospectral manifold
MA

P . We will use the eigenbundle map em to map Arnold–Liouville tori to the real part of
the generalized Jacobian of the singular spectral curve Cm and show that this map is a (Z2)

n−1

covering. This will prove complete algebraic integrability of the confluent Neumann system
and independence of the first integrals will follow.

Let En be the eigenspace of the double eigenvalue an, which is spanned by the unit vectors
en and en+1. The behavior of L(λ)|En

near infinity is given by the n, n+ 1 block F of the matrix
q ∧ p, which is in fact conserved by the isospectral flow. The block F depends only on the
angular momentum K = qnpn+1 − qn+1pn and is a regular matrix

F =
(

0 K

−K 0

)
of rank 2 if K 
= 0. The isospectral flow given by (6) conserves both matrix A and the block
F; therefore it is reasonable to consider isospectral manifold of all matrix polynomials with
these data fixed

MA,F
P = {

L(λ) ∈ MP ;L(∞) = A, prEn
◦ L′(∞)|En

= F
}
,

where prEn
is a projection to En, and the values of L(λ) and L′(λ) at infinity are defined by the

limits L(∞) := limλ→∞(λ−2L(λ)) and L′(∞) := limλ→∞ d(λ−2L(λ))/d(λ−1). On MA,F
P

acts the subgroup PGA,F < PGA of matrices that stabilize F as well. We can write

PGA,F 	 (C∗)n−1 × GF ,

where GF is the stabilizer subgroup of F in Gl(2, C). The group GF 	 C
∗ consists of matrices

r

(
cos ϕ sin ϕ

−sin ϕ cos ϕ

)
,

where r ∈ (0,∞) and ϕ ∈ [0, 2π). We will describe the isospectral manifold MA,F
P as an

open subset of the generalized Jacobian of singularized spectral curve.

Theorem 3.5. Let f ∈ C
n be the value of FEM such that the normalized spectral curve C

is smooth and K 
= 0. Let us denote by TA = (C∗)n−1 the subgroup of PGA of diagonal
matrices G = [gi,j ] with gn,n = gn+1,n+1.

(i) The complex level set F−1
EM(f ) is a covering of the isospectral manifold MA,F

P

/
TA. The

fiber of the covering is the same as the orbit of the group (Z2)
n−1 generated by reflections

qi �→ −qi for 1 � i � n − 1.
(ii) The isospectral manifold MA,F

P

/
TA is isomorphic to the open subset of the generalized

Jacobian of the singular spectral curve Cm′ given as a singularization of smooth spectral
curve by modulus m = (∞, iK) + (∞,−iK).

10
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(iii) The flow of K generates the fibre C
∗ of the extension C

∗ → Jac(Cm) → Jac(C).
(iv) The flow of H on the generalized Jacobian Jac(Cm) is linear.

Proof. If K 
= 0 then F is a regular matrix with two different eigenvalues ±iK . From the result
in [14] the isospectral manifold MA,F

P is isomorphic as an algebraic manifold to the Zariski
open subset J (Cm)−� of the generalized Jacobian of the singularized spectral curve, given by
the spectral polynomial P and modulus m′ = λ−1(∞) = ∑n−1

i=1 (∞, ai)+(∞, iK)+(∞,−iK).
The same theorem asserts that the following diagram commutes

If we singularize C only by modulus m = (∞, iK) + (∞,−iK), we can insert em :
MA,F

P

/
(C∗)n−1 → Jac(Cm) − � into the above diagram

We only have to prove that the fiber F−1
EM(f ) consisting of matrices of the form (5) is a covering

of the quotient MA,F
P

/
TA. By using the Lax matrix (5) we gave a parametrization

JA : (q, p) �→ L(λ) = Aλ2 + q ∧ pλ − q ⊗ q

of the quotient MA,F
P

/
TA by (q, p) ∈ F−1

EM(f ) ⊂ (T ∗S)C. First note that the map
JA : (T ∗Sn)C → MA,F

P is an immersion. We will show that any orbit of TA intersects
the image of JA only in a finite number of points. To explain how PGA,F acts on the Lax
matrix (5), note that an element g ∈ PGA,F acts on a tensor product x ⊗ y of x, y ∈ C

n+1

g : x ⊗ y �→ (gx) ⊗ ((g−1)T y)

by multiplying the first factor with g and the second with (g−1)T . The subgroup of PGA,F ,
for which the generic orbit lies in the image of JA, is given by orthogonal matrices

O(n, C) ∩ PGA,F 	 (Z2)
n−2 × GF ∩ O(2, C).

There are special points in the image of JA that have a large isotropy group (take for example
qi = δij and pi = δik, k 
= j , where the isotropy is (C∗)n−2). But the intersection of any
orbit with the image of JA coincides with the orbit of (Z2)

n−2 × GF ∩ O(2, C). If we
take the torus TA < PGA,F consisting of diagonal matrices with gn,n = gn+1,n+1, so that
TA ∩ GF = {Id}, the orbits of TA will intersect the image of JA only in the orbit of the finite
subgroup (Z2)

n−2. We have proved that the level set of Lax matrices L(λ) = JA(q, p) with
the fixed characteristic polynomial P is an immersed submanifold in MA,F

P that intersects the

11
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orbits of torus TA 	 (C∗)n−1 in only a finite number of points and is thus a covering of the
quotient MA,F

P

/
TA.

The group GF is the complexification of the group of rotations in the qn, qn+1 plane and
is generated by the Hamiltonian vector field of K. This proves assertion (iii).

To prove assertion (iv), note that the matrix polynomial M(λ) in the Lax equation (6) is
given as a polynomial part R(λ,L(λ))+ for a polynomial R(z,w) = zw. It is well known that
such isospectral flows are mapped by em to linear flows on the Jacobian Jac(Cm) (see [4] for
reference). �

Taking into account the real structure on Cm, the Arnold–Liouville tori can be described as a
real part of the generalized Jacobian.

Theorem 3.6. For K 
= 0 and C smooth, the Arnold–Liouville tori are (Z2)
n−2 coverings

of the real part of the generalized Jacobian. The rotations generated by K are precisely the
rotations of the fiber S1 in the fibration S1 → Jac(Cm)R → Jac(C)R, which is the real part of
the fibration C

∗ → Jac(Cm) → Jac(C).

The above theorem gives us an algebraic way of describing the symplectic quotient T ∗Sn//kS
1.

Algebraically T ∗Sn is a covering of the relative generalized Jacobian, which is a disjoint union

J̃ac
R = ∪Cm

JacR(Cm)

over the space of curves Cm corresponding to the real values of the energy–momentum map.
The symplectic quotient of J̃ac

R
//kS

1 is then the relative Jacobian over the space of normalized
spectral curves with a fixed value of K:

∪Cm;K=k JacR(C).

Corollary 3.7. The complex level set of (F1, . . . , Fn−1) of the symplectic quotient of the
confluent Neumann system is a (Z2)

n−2 covering of the quotient MA,F
P

/
PGA,F . The manifold

MA,F
P

/
PGA,F is isomorphic to the open subset Jac(C) − � of the Jacobian of the normalized

spectral curve.

This result agrees perfectly with the results obtained previously for the Rosochatius system
[11].

Proof of theorem 3.6. Note that the eigenvalues of F are ± iK . Note also that the value of μ

at the points P± equals the eigenvalues of F, so P± = (∞,± iK). On C there is a natural real
structure J induced by the conjugation on (λ, μ) ∈ C

2. The points P± that are glued in the
singular point form a conjugate pair P± = JP∓. If we follow the argument in [17] we can find
the real structure of the fiber C

∗ in the extension C
∗ → Jac(Cm) → Jac(C). Note that Pic(C)

is defined as the space of all divisors modulo divisors of meromorphic functions on C, whereas
Pic(Cm) is given by the divisors on C that avoid P± modulo meromorphic functions on Cm. So
the fiber C

∗ is given by meromorphic functions on C modulo meromorphic functions on Cm.
Since we obtained Cm by gluing two points P±, a function f on C defines a function on Cm

if f (P+) = f (P−) or equivalently f (P+)/f (P−) = 1. For a divisor of any function f on C,
the number z = f (P+)/f (P−) ∈ C

∗ determines its class in the Picard group Pic(Cm). So if
P± = JP∓, then the real structure on the fiber C

∗ is given by the map

z = f (P+)

f (P−)
→ f (JP+)

f (JP−)
= f (P−)

f (P+)
= 1

z̄

and the real part of C
∗ is the unit circle S1 given by zz̄ = 1. In contrast, when the singular

points are real P± = JP±, the real structure on C
∗ is given by the conjugation and the real

part of C
∗ is R

∗. �

12
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3.4. A bifurcation diagram

We can use the normalized spectral curve C to describe the singular locus of the energy–
momentum map.

Proposition 3.8. The vector (f1, . . . , fn−1, k) ∈ R
n is a regular value of the real momentum

map

FEM = (F1, . . . , Fn−1,K)

if and only if the normalized spectral curve C is smooth. The singular locus of the map FEM

consists of

• hyperplanes Fi = 0,
• zero level set of the discriminant of Q(x) from (8),
• the codimension-2 hyperplane defined by K = 0 and H = 1

2ai .

Proof. The ‘if’ part follows directly from theorem 3.5. If C is smooth and K 
= 0, then the
level set of FEM is locally isomorphic to the real part of Jac(Cm) − �, which is of dimension
n. Hence the rank of the differential of FEM is also n. If K = 0 and C is smooth, the
level set of (F1, . . . , Fn−1) is locally isomorphic to the real part of the isospectral manifold
MA,F

P

/
PGA,F , which is in turn isomorphic to the real part of Jac(C)−�. Since the dimension

of Jac(C) is n − 1, the rank of the differential of (F1, . . . , Fn−1) is also n − 1. The integrals
Fi are invariant to the rotations generated by K and therefore their Hamiltonian vector fields
XF1 , . . . , XFn−1 are independent of XK . We are left to show that if XK = 0 the normalized
curve C is not smooth. It is easy to see that the case XK = 0 appears only if XH = 0 but then
the rank of XF1 , . . . , XFn−1 is not full and the curve C has to be singular.

To prove the only if part let us consider case by case the components of the singular locus.
The curve C is singular if and only if the polynomial

∏
(ai − x)Q(x) has a double root. This

can happen in two cases:

(1) ai is a zero of Q(x), this happens when Fi = 0,
(2) Q(x) has double zero, this happens if the discriminant of Q is zero.

The hyperplanes Fi = 0 are singular, since for the points (q, p) with qi = pi = 0 the
differential dFi = 0. The proof that the discriminant of Q is singular can be found in [6] and
I will omit it here, because it is very specific and beyond the scope of this paper. �

Remark 3.9. For values of an > aj for some 1 � j < n the bifurcation diagram has a
singular ‘thread’ of focus–focus singularities defined by values K = 0 and H = 1

2aj . This
would suggest the presence of nontrivial monodromy. Indeed for two degrees of freedom, the
singular level set corresponding to the isolated singular value is a union of two spheres with
two pairs of points identified. From the general result in [23] it follows that the monodromy
is nontrivial and equals(

1 0
ε 1

)
(10)

with ε = 2 being the number of spheres in the singular level set. This can also be checked by
a direct calculation.

The image of the energy–momentum map (K, 2H) for the confluent Neumann system with
two degrees of freedom is depicted in figure 1. Regular values lie in the shadowed area while
the solid curves contain singular values. The points (0, a1) and (0, a2) are the images of fixed
points. Note that when passing from a2 > a1 to a1 > a2, the pair of lines becomes imaginary
and only their intersection—isolated focus–focus point (0, a1)—remains real.
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(a) a1>a2 (b) a2>a1

Figure 1. Image of the energy–momentum map (K, 2H) for the confluent Neumann system with
potential matrix A = diag(a1, a2, a2). Regular values lie in the shadowed area while the solid
curves contain singular values. The points (0, a1) and (0, a2) are the images of fixed points.

3.5. Note on superintegrability

An integrable system with Hamiltonian H and a commuting set of first integrals H =
F1, . . . , Fn is superintegrable, if there exist additional first integrals that Poisson commute
with H but not with all Fi (see [24] for reference).

One would expect that the confluenting eigenvalues of the potential would result in
additional symmetries and superintegrability. This is the case if the potential has k > 2
identical eigenvalues and the system is invariant to the action of non commutative group
SO(k), which gives rise to additional first integrals that do not Poisson commute with each
other.

However if only two of the eigenvalues coincide, the confluent Neumann system is not
superintegrable. The proof of this conjecture is beyond the scope of this paper, but we provide
the argument in two degrees of freedom. In this case superintegrability implies that the flow of
H is periodic. If we write H = p1I1 + p2I2 with the action integrals I1 = K

2π
and I2, the flow

of H is periodic if and only if the quotient p1

p2
is rational. However, the presence of nontrivial

monodromy (10) for a1 > a2 implies that the quotient p1

p2
increases by ε = 2 if we make one

turn around the singular point (0, a1) in the image of (K, 2H). Therefore the quotient p1

p2
has

to be irrational for generic values of H and K.

3.6. Note on the case K = 0

We have seen in the previous section that the case K = 0 is significantly different from the
generic case K 
= 0. The problem lies in the following observation. The space of hyperelliptic
curves that appear in the description of the Neumann system is parametrized by K2 and not by
K. As a consequence, the relative generalized Jacobian is degenerated for K = 0. The phase
space of the complexified Neumann system is therefore ‘folded’ into the relative Jacobian by
the map K → K2. The map between the original phase space and its image in the relative
Jacobian is singular at K = 0. It is therefore illusory to expect that we can describe the whole
phase space including the fiber K = 0 by algebro-geometric methods. A different approach
has to be considered which would study the ‘fold’ given by K2 in more detail. This is to be
covered in our future work.

4. Conclusions and discussion

We have proved the algebraic integrability of the confluent Neumann system by proving
theorem 3.5, which describes the Arnold–Liouville tori in terms of the generalized Jacobians
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of the singular spectral curve. We performed the reduction of the rotational symmetry and
established a firm relationship between symplectic reduction and desingularization of the
spectral curve (corollary 3.7). Most of our results very likely generalize to any Moser system
arising from the rank-2 perturbations of a fixed matrix with a double eigenvalue. From our
work and previous examples [16, 17] it appears that there is generally a relation between the
rotational symmetry and singularities of spectral curves. We have exposed this relationship
explicitly in our case and have seen that the reduction of S1 symmetry reveals itself in the
algebraic description as a reduction from the generalized Jacobian of the singular spectral
curve to the ‘ordinary’ Jacobian of the normalized spectral curve. One can say that the
desingularization of the spectral curve corresponds to the symplectic quotient. Unfortunately,
this relation is not a general phenomenon as we can see when considering the case K = 0.
One can speculate that the appearance of the global action of a compact group is related to
the presence of a ‘generic’ singularity but there is no general proof yet. Note that the generic
Neumann system has no symmetries given by a compact group.

The singularities of the spectral curve appeared in two different roles in our study. The
singularity that is a consequence of the confluency is ‘generic’ in that it appears uniformly for
all values of the energy–momentum map. The same is true for the extension by a complexified
group of rotations C

∗, which defines the generalized Jacobian and results in global rotational
symmetry. The ‘sporadic’ singularities, which correspond to the singular values of the energy–
momentum map (see proposition 3.8) are strictly a local phenomenon. In those cases the
extension by C

∗ and the resulting rotational symmetry do not extend globally. Algebraically
speaking both singularities are the same, but the ‘generic’ singularity appears globally and thus
gives rise to a rotational symmetry. Sporadic singularities, on the other hand, appear when the
level sets of the energy–momentum map are singular (orbits of lower dimension, heteroclinic
and homoclinic orbits). It would be interesting to describe the isospectral sets of the singular
spectral curves. Note that when we introduced generic singularity we made sure that we used
the subset of the singular isospectral set, consisting of regular Lax matrices. In the study
of sporadic singularities, non-regular part of the isospectral set should not be avoided. It is
our conjecture that the singular isospectral sets that induce homoclinic or heteroclinic orbits
should pose an obstruction to the existence of global action of compact groups.

In a somewhat more ambitious and speculative vein, one could study the relationship
between symmetries of certain PDEs and generic singularities in appropriate spectral curves
of infinite genus. The Maxwell–Bloch equation, for example, can be viewed as a chain of
the confluent Neumann systems [25, 26], whose symmetries indeed reflect in a symmetry of
the whole Maxwell–Bloch system [27]. The description of the Maxwell–Bloch system with
generalized Jacobians of singular spectral curves of infinite genus should be, to some extent,
analogous to our results.
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[4] Audin M 1999 Spinning Tops: A Course on Integrable Systems paperback edition (Cambridge Studies in
Advanced Mathematics vol 51) (Cambridge: Cambridge University Press) p 139

[5] Beauville A 1990 Jacobiennes des curbes spectrales et systèmes hamiltoniens complètement intégrables Acta
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